Progranulin regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic progenitor cells
نویسندگان
چکیده
Myogenic progenitor cell (MPC) is responsible for postembryonic muscle growth and regeneration. Progranulin (PGRN) is a pluripotent growth factor that is correlated with neuromuscular disease, which is characterised by denervation, leading to muscle atrophy with an abnormal quantity and functional ability of MPC. However, the role of PGRN in MPC biology has yet to be elucidated. Here, we show that knockdown of zebrafish progranulin A (GrnA) resulted in a reduced number of MPC and impaired muscle growth. The decreased number of Pax7-positive MPCs could be restored by the ectopic expression of GrnA or MET. We further confirmed the requirement of GrnA in MPC activation during muscle regeneration by knockdown and transgenic line with muscle-specific overexpression of GrnA. In conclusion, we demonstrate a critical role for PGRN in the maintenance of MPC and suggest that muscle atrophy under PGRN loss may begin with MPC during postembryonic myogenesis.
منابع مشابه
Establishing a new animal model for muscle regeneration studies
Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system. Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...
متن کاملPoised Regeneration of Zebrafish Melanocytes Involves Direct Differentiation and Concurrent Replenishment of Tissue-Resident Progenitor Cells.
Efficient regeneration following injury is critical for maintaining tissue function and enabling organismal survival. Cells reconstituting damaged tissue are often generated from resident stem or progenitor cells or from cells that have dedifferentiated and become proliferative. While lineage-tracing studies have defined cellular sources of regeneration in many tissues, the process by which the...
متن کاملSix1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration
Satellite cells (SCs) are stem cells that mediate skeletal muscle growth and regeneration. Here, we observe that adult quiescent SCs and their activated descendants expressed the homeodomain transcription factor Six1. Genetic disruption of Six1 specifically in adult SCs impaired myogenic cell differentiation, impaired myofiber repair during regeneration, and perturbed homeostasis of the stem ce...
متن کاملSkeletal Muscle-derived Hematopoietic Stem Cells: Muscular Dystrophy Therapy by Bone Marrow Transplantation
For postnatal growth and regeneration of skeletal muscle, satellite cells, a self-renewing pool of muscle stem cells, give rise to daughter myogenic precursor cells that contribute to the formation of new muscle fibers. In addition to this key myogenic cell class, adult skeletal muscle also contains hematopoietic stem cell and progenitor cell populations which can be purified as a side populati...
متن کاملHedgehog acts directly on the zebrafish dermomyotome to promote myogenic differentiation.
Vertebrate myogenesis is regulated by signaling proteins secreted from surrounding tissues. One of the most important, Sonic hedgehog, has been proposed to regulate myogenic precursor cell survival, proliferation, and differentiation in a variety of vertebrates. In zebrafish, Hedgehog signaling is both necessary and sufficient for the development of embryonic slow muscle fibers-the earliest dif...
متن کامل